
True-amplitude cross-correlation shot-profile imaging condition
B. Arntsen∗, NTNU, E. Tantserev, NTNU and L. Amundsen, Statoil.

SUMMARY

We derive a stable cross-correlation type imaging condition for
shot-profile migration which produces common-angle gathers
with correct amplitude-versus-angle relationship or conven-
tional stacks with better estimates for the angle-averaged re-
flectivity. The method is simple to implement and requires a
modification of the initial wavefield in the downward propa-
gation and decomposition into plane-waves in the midpoint-
slowness domain We show that the cross-correlation true-
amplitude imaging condition arises naturally from wave theory
through the solution of a simple forward problem.

INTRODUCTION

Claerbouts (1971) cross-correlation imaging condition for shot-
profile migration has been extensively used due to its simplic-
ity and stability. Designed for structural imaging it is expected
and well known that stack amplitudes produced with this ap-
proach do not represent a true average of the angle dependent
reflectivity. Claerbout (1971) also introduced the imaging con-
dition which gives correct stack amplitudes, but is difficult to
implement due to the instability of spectral division. A wide
variety of approaches to stabilize the imaging have been in-
vestigated (see f.ex. Schleicher et al. 2007 and Guitton et
al. 2007) but a simple and satisfactory solution remains to
be found. We derive a stable cross-correlation type imaging
condition for shot-profile migration which produces common-
angle gathers with correct amplitude-versus-angle relationship
or conventional stacks with better estimates for the angle-averaged
reflectivity. The method is simple to implement and requires
a modification of the initial wavefield in the downward prop-
agation and decomposition into plane-waves in the midpoint-
slowness domain (de Bruin et al, 1990). Zhang et al. (2007)
introduced a similar cross-correlation type imaging condition,
but based on ray-theoretical arguments. Here we show that
the cross-correlation true-amplitude imaging condition arises
naturally from wave theory through the solution of a simple
forward problem.

THEORY

We consider the simplified situation of a single reflecting inter-
face at depth z with reflection coefficient R and where the wave
velocity and density are constant above the reflector. In the
frequency-wavenumber domain the relation between the up-
going wave U and downgoing wave D, can then be expressed
as

U(k,z,ω) = R(k,z,ω)D(k,z,ω), (1)

where k is the horizontal wavenumber with components (kx,ky),
z is the depth and ω is the frequency. The downgoing wave at
depth z is related to the downgoing wave at the surface, D0, by

the relation

D(k,z,ω) = exp [−ikz(k,ω)z]D0(,ω), (2)

where kz is the vertical wavenumber. For a point source the
downgoing wave at the surface is given by

D0(k,ω) = exp(−ikq)
S(ω)

2ikz(k)
, (3)

where q is the horizontal position of the source and S(ω) is the
source pulse. Equation 1 can be solved as

R(k,z,ω) =
U(k,z,ω)
D(k,z,ω)

, (4)

which becomes by inserting equation 2 into equation 4

R(k,z,ω) = U(k,z,ω)D′∗(k,z,ω). (5)

Here D′ is a downgoing wavefield

D′(k,z,ω) = exp [−ikz(k,ω)z]D′0(k,ω), (6)

with the initial wavefield D′0 at the surface equal to

D′0(k,ω) = exp(−ikq)
−2ikz

S∗(ω)
. (7)

Equation 5 expresses the reflection coefficient as a product be-
tween the wavefields U and D′∗ instead of a division as in
equation 4. This has the advantage of avoiding numerical in-
stabilities related with spectral division.

For a medium with vertical and lateral velocity changes, it can
be shown that equation 5 must be modified to read

R(kr,ks,z,ω) = U(kr,z,ω)D′∗(ks,z,ω), (8)

where R(kr,ks,z,ω) is the reflectivity matrix, kr is the hori-
zontal wavenumber of the upgoing wave and ks is the horizon-
tal wavenumber of the downgoing wave. The initial downgo-
ing wavefield at the surface, D′0(ks), is given by equation 3, ex-
cept that the source pulse S(ω) must be replaced by S(ω)(c2

0/ω2)
where c0 is the velocity at the source position. In the spatial
domain equation 8 becomes

R(xm,h,z,ω) = U(xm−h,z,ω)D′∗(xm +h,z,ω), (9)

where we have also introduced the midpoint and offset co-
ordinates xm and h. Finally, inverse transforming equation 9
over the offset coordinate and introducing the offset slowness
we get after integration over frequencies and summation over
shots

R(xm,ph,z)=
∑
shots

∫ +∞

−∞

dω

∫ +∞

−∞

dhexp(iωph)R(xm,h,z,ω),

(10)

which gives the reflectivity matrix as a function of midpoint
and slowness. Equation 9 is similar to Rickett and Savas (2002)
offset imaging condition, except that the downgoing field is
replaced by the modified downgoing field . Claerbouts (1971)
classical cross-correlation shot-profile imaging condition is ob-
tained as a special case for h = 0 from equation 9.
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NUMERICAL EXAMPLES

Figure 1 shows a simple horizontally layered model with den-
sity contrasts between the layers. The wave velocity is con-
stant equal to 2000 m/s. A line of synthetic data consisting of
200 shots where acquired across the model using a split-spread
geometry with a maximum half-offset of 5km. A single shot
is shown in Figure 2(a) together with a common angle gather
computed using equation 10 and then converting the slowness
ph into the corresponding angle using all 200 shots.

Figure 1: Horizontally layered acoustic earth model with den-
sity contrasts only.

Figure 3 shows rms amplitude picks of the angle gather shown
in Figure 2(b). The rms amplitude values were computed in a
200 ms window around each of the three reflectors. A common
scaling factor for all the three amplitude graphs were used,
such that the relative amplitude relations between the three
reflectors are preserved. We see that the correct amplitude-
versus-angle behavior is recovered, since a reflector with a
pure density contrast has an angle independent reflection co-
efficient. The imaging condition given by Rickett and Sava
(2002) is designed for structural imaging and not expected to
yield correct amplitude-versus-angle behavior, but it is still
of interest to compare the amplitude response of this imag-
ing condition with our condition given by equation 10. Since
Rickett and Sava (2002) compute the reflectivity matrix in the
midpoint-offset domain

Rrs(xm,h,z,ω) = U(xm−h,z,ω)D∗(xm +h,z,ω), (11)

where D is now the downgoing wavefield due to a point source
(see equation 2), we use this expression to generate angle gath-
ers by using equation 10 with R replaced by Rrs.

The resulting gather is shown in Figure 4 , and the correspond-
ing amplitude picks are shown in Figure 5. We see that the
angle-versus-angle behavior is incorrect, particularly for large
angles. Claerbouts classical cross-correlation imaging condi-
tion corresponds to stacking the gather in Figure 4 across all
angles, and it is clear that the amplitudes of a stack section

(a)

(b)

Figure 2: Single shot (a) acquired over the earth model shown
in figure 1 The acquisition geometry is of split-spread type
with maximum half offset of 5 km. A common angle gather
(b) was computed using equation 10 and 200 shots.
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Figure 3: Rms amplitude picks of the common angle gather
shown in Figure 2(b)

in this case do not represent an average of the true angle-
dependent reflectivity but is instead biased. For the case of
a plane reflector the large angles would contribute too much,
and this would in particular tend to overestimate the reflec-
tion strength of shallow reflectors relative to deeper ones. The
imaging condition given in equation (10) can also be used for
cases with complex velocity models, provided that the cor-
responding up- and downgoing wavefields are computed cor-
rectly. To that end any one-way extrapolation scheme can be
used. For cases of non-flat reflectors, although the reflectiv-
ity matrix is correctly computed, the mapping from slowness
to angle is non-trivial and will also involve corrections of the
amplitude. These corrections can, however, be computed sep-
arately after the migration itself.

STACK AMPLITUDES

Claerbout’s imaging condition implies averaging the reflectiv-
ity matrix over horizontal wavenumbers, and hence angles. In
general amplitudes of events with large angles will be overem-
phasized, as demonstrated in Figure 5. In very broad terms one
would expect that shallow events with large angles will tend
to appear with incorrect stack-amplitudes. Figure 6(a) shows a
zero-offset stack computed using equation 9, while Figure 6(b)
shows the same data set using Claerbout’s cross-correlation
imaging condition. As expected, the two sections are quite
similar, except that the amplitudes of shallow events in Fig-
ure 6(b) seem to be larger relative to deeper events in the same
section than is the case for Figure 6(a). Figure 7 shows stack
traces from Figure 6(a) (upper trace) and Figure 6(b) (lower
trace). We see that amplitudes on the stack trace obtained us-
ing the new imaging condition given by equation 9 seem to be
better balanced than the stack trace obtained with Claerbout’s
cross-correlation imaging condition.

Figure 4: Angle gather computed using Rickett and
Savas(2002) offset imaging condition by employing equa-
tion 11 and then using equation 10.

Figure 5: Rms amplitude picks of the common angle gather
shown in Figure 4.
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(a)

(b)

Figure 6: (a) Zero-offset section using the Marmousi syn-
thetic data set with the true-amplitude imaging condition given
by equation 9 and (b) zero-offset section using the Marmousi
synthetic data set and the Claerbout cross-correlation imaging
condition.

Figure 7: Single stack-trace at position 4 Km from Figure 6(a)
(upper trace) and single stack-trace at position 4 Km from Fig-
ure 6(b) (lower trace)

CONCLUSION

Claerbouts (1971) cross-correlation imaging condition can be
modified to a true-amplitude cross-correlation type imaging
condition by changing the source of the downgoing wavefield.
Essentially this modification deconvolves the spatial response
of the seismic point source and restores the amplitudes in the
final image.
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